
International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 1

Scalable Publish and Search Strategies for Effective Keyword-

Based Database Search

D.J.S. Sako & O.E. Taylor

Department of Computer Science

Rivers State University

Port Harcourt, Nigeria.

sunday.sako@ust.edu.ng, taylor.onate@ust.edu.ng

Abstract

Data, the backbone of all enterprise application, is often locked up in one or more databases.

Looking for particular information across multiple databases can be quite tedious and time

consuming if all databases in the domain are all searched for information that may not be

found in some of them. In this paper, we present an approach and the implementation of a

system to query and search multiple relational databases to produce more effective and

efficient result. Our approach depends on registering an existing database appilication with

the system to enable the database or part of it for keyword search, identifying, ranking and

searching only the published/registered databases relevant to a given query and is most likely

to provide useful results. A database is relevant if it contains some information to participate

to the answer of the raised query. The implication is that databases with zero or negative

score do not contain the query terms and need not participate in the search process thereby

reduceing the time required to search the databases for keywords, as only participating

database(s) will be searched for query terms. We discussed the implementation of our system

including results of experimental evaluation to demonstrate the scalability and effectiveness

of our system.

Keywords: Publish, Scalability, Query, Search, Crawling, Indexing, and Relational database.

1. Introduction

When a user submits a query, which usually consists of one or more keywords that reflect the

user‟s information needs, to a search engine, the search engine returns a list of items from the

set of web pages covered by the search engine. Usually, retrieved information are displayed

to the user based on how well they are deemed to match with the query, with better-matched

ones displayed first (Yu & Meng, 2003). Since a lot of information is stored in databases (and

not as Hyper Text Markup Language documents), it is important to provide a similar search

paradigm for databases, where users can query a database without knowing the database

schema and database query languages such as Structured Query Language (SQL).

Databases provide the content storage for many sites, which dynamically create web pages

around them. Intranets often contain large amount of information stored in database as well

(Anto, 2015). Agrawal, Chaudhuri, and Das (2002) had noted that a significant amount of the

world‟s enterprise data resides in these relational databases and that it is important that users

be able to seamlessly search and browse information stored in these databases as well.

According to them, searching databases on the internet and intranet today is primarily

enabled by customized web applications closely tied to the schema of the underlying

databases, allowing users to direct searches in a structured manner

mailto:sunday.sako@ust.edu.ng
mailto:taylor.onate@ust.edu.ng

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 2

A study by (Asadi & Jamali, 2004) estimated that 80% of the data on the World Wide Web is

in the hidden web. The hidden web refers to information that can be accessed on the World

Wide Web, but which current search engines cannot find (nor can the internet users who

subsequently use those search engines). It contains Web pages that are not publicly

indexable. A major part of the hidden web consists of information tucked away in databases.

Agrawal, Chaudhuri, Das and Gionis (2003) asserted that there is the need to develop query-

processing strategies that build on a crucial characteristic of IR-style keyword search: only

the few most relevant matches –according to some definition of “relevance”– are generally of

interest. Consequently, rather than computing all matches for a keyword query, which leads

to inefficient executions, the techniques should focus on the top-k matches for the query, for

moderate values of k. In a work done by (Agrawal, Chaudhuri, Das, 2002) when a DBXplorer

is given a set of query keywords, it returns all the rows (either from single table, or by joining

tables connected by foreign-key joins) such that each row contains all the keywords.

Given a set of published/registered relational databases, the system offers flexible interface to

access only databases relevant to a given query. A database is relevant if it contains some

information to participate to the answer of the raised query (Hassan, Alhajj, Ridley, and

Barker, 2004). Clearly, if databases are optimally ranked for a query, then it is sufficient to

search the first k database D with the query. The implication is that databases with zero or

negative score do not contain the query terms and need not participate in the search process.

This optimization technique greatly reduces the time required to search the databases for

keywords, as only participating database(s) will be searched for query terms.

With its capability to handle multiple databases, search any number of these databases

without changing code, and to provide a common search interface for applications

(databases) without the need for application interface themselves, the task of searching

information scattered across databases is simplified.

In this paper, we discuss the implementation of an approach to publishing, crawling/indexing

and searching multiple relational databases to produce more effective and efficient result. The

system is implemented using commercial relational databases and Web Server, and users can

interact with it via a browser front-end.

The rest of the paper is organized as follows: In section 3, we define the problem of

publishing and keyword search over multiple databases. In section 4, we present the proposed

approach and an overview of the search system including brief discussion and the algorithms

of major modules or processes. Section 5 presents the implementation of the search system

and experiments that demonstrate the scalability and effectiveness of our solution. An

appendix containing some screenshots of user interactions with the search system is also

included.

2. Related Work

Adapting keyword search to structured databases has already attracted the attention of several

researchers. These include works done by (Agrawal, Chaudhuri, and Das, 2002), (Bhalotia,

Hulgeri, Nakhe, Chakrabari & Sudarshan, 2001), (Dar, Entin, Geva & Palmon, 1998), (Sarda

& Jain, 2001), (Hassan, Alhajj, Ridley & Barker, 2004) and a number of others.

DBXplorer by (Agrawal, Chaudhuri, and Das, 2002), BANKS by (Bhalotia, Hulgeri, Nakhe,

Chakrabari & Sudarshan, 2001), DISCOVER by (Hristidis & Papakonstantinou, 2002),

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 3

DataSpot by (Dar, Entin, Geva & Palmon, 1998) and Mragyati by (Sarda & Jain, 2001) had

discussed only the case where there is a single database and as asserted by (Hassan, Alhajj,

Ridley & Barker, 2004), they also have one thing in common; almost all of them use a graph

to implement the basic database representation. The main limitation of this work is that all

keywords must be contained in the same tuple. (Hassan, Alhajj, Ridley & Barker, 2004) had

extended the implementation to multiple databases where only databases relevant to a given

query will be accessed and their proposed solution to the usefulness estimation problem is an

extension of the approach of (Gravano, Garcia-Molina, & Tomasic, 1999) taking into account

the level of search and the structure of the relational database.

(Yu, Li, Solins & Tung, 2007) studied the database selection problem for relational database

and proposed a method that effectively summarises the relationships between keywords in a

relational database based on its structure. As an illustration, they looked at two example

databases DB1 and DB2 shown in Figure 1, in which the arrowed lines drawn between tuples

indicate their connections based on foreign key references. Suppose we are given a keyword

query Q = {multimedia; database; V LDB}.

Figure 1: Example of Databases (Yu, Li, Solins & Tung, 2007)

It is observed that DB1 has a good result to Q, which is the result of joining tuple t1 with t3.

On the contrary, DB2 cannot provide relevant results to Q - there are no trees of connected

tuples containing all the query keywords. But, if we evaluate the two databases for Q based

on the keyword frequency style summaries (denoted as KF-summary in their work, and KF-

summary (DB1) = {… multimedia:1, database:2, VLDB:1, …}, and KF-summary(DB2) =

{… multimedia:3, database:3, VLDB:1, …}), DB2 will be selected over DB1. They,

therefore, argued that the usefulness of a relational database in answering a keyword query is

not only decided by whether it has all the query keywords, but more importantly, it depends

on whether the query keywords can be connected meaningfully in the database.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 4

In this work we have extended these techniques to keyword search over multiple databases by

taking into account the scalability of database publishing and search. The system can search

any number of databases without changing code and new database can be

published/registered for crawling/indexing without affecting the overall performance of the

system, takng into account the fact that only databases published and relevant to a given

query will be ranked and accessed.

3. Problem Definition

We now define the problem of publishing and keyword search over multiple databases wihin

a specific domain.

1. Given a set of databases DB1, …, DBn, to be registered/published, effectively produce

a scalable publishing strategy that will fit the new database(s) into the already existing

search system setup in such a way that their addition would not negatively affect the

overall performance of the system.

2. Given set of published databases DB1, …, DBn, a keyword Query Q, and a scoring

function, effectively produce the top-k answers for Q from DB1,…,DBn, such that

these answers closely approximate the ideal top-k results for Q. Each database has n

relations R1, . . . ,Rn. Each relation Ri has mi attributes ia1 , . . . , i

mia , a primary key and

possibly a directed graph that captures the foreign keys into other relations.

The rest of the paper describes the solution to these problems

4. Methodology

4.1 The Proposed Approach

The methodology that we propose enabling keywords search requires retrieving the n most

similar documents across multiple databases for a given query consists of the following steps.

 Publishing/registering the databses. Database(s) that will participate in the search

process is initially registered as part of the search system.

 Crawling and indexing the published database: The search system builds up its own

information base when an application database is initially registered with it. It

provides interfaces to select tables/columns within the database to crawl and index.

 Rank the published databases using some ranking or scoring function – to reduce the

search time and optimize the search process. That is a database with a higher rank will

be searched before a database with a lower rank.

 Search the published databases according to their rank in a certain manner to retrieve

n documents. Rank the published databases using some ranking or scoring function.

Search only the most relevant databases (higly ranked) to find the (approximately)

top k results. A database is relevant if it contains some information to participate to

the answer of the raised query.

These combined publishing and search techniques greatly reduce the time required to search

the databases for keywords, as only registered, participating and relevant database(s) will be

searched for query terms.

4.2 System Architecture

We now describe the architecture of our search system. The system provides a browser-based

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 5

interface. The user supplies a query string consisting of a number of keywords and the query

results are also displayed in the browser. The main building blocks of the system are shown

in figure 2.

Figure 2: The Architecture of the Search System.

4.2.1 User Interface (Browser)

The client component provides a simple administrative console and the search interface. The

application admininstrative console provides for the publishing/registration of databases,

making all the indexing configurations for a database and the scheduling of the indexing

process. The search interface provides for user to enter the query terms and a default view for

showing the search results. The administrative console functions are hidden from the general

end-users who only issue query to the system and get the result of the query.

4.2.2 Publish Module

An existing database application is first registered with the system. The publish component or

module builds the metadata by consulting the database catalogue. It provides interfaces to:

select database(s),

The search system builds up its own information base when an application database is

initially registered (published) with it. This information base contains metadata, „value-

attribute‟ mapping, etc.

4.2.3 Crawler/Indexer

The list of databases that needs to be search-enabled is given as input to the crawler with the

configuration parameters specific to each of the data sources (through the publish module).

The crawler takes the input database, scans through the tables and the data available in each

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 6

of the given database and builds up its own information base and creating certain index

information about the database and computing the database statistics. The important index

information stored about the data includes:

 The location of the occurrence of a word

 The count of the occurrences of a particular word

 The type of the column in which a particular word occurs

 The relationship between different tables.

The crawler also has interface that enables you to select tables/columns within the database to

crawl and index. The system requires that each database cooperates and periodically updates

this index information, following some predefined protocol.

4.2.4 Search/Query Processor

Search component takes care of fetching the right information from the participating

database(s), given the search words, based on the index information.

For a given set of keywords, the search component provides interfaces to retrieve matching

databases from a set of published databases, and selectively identify tables, columns/rows

that need to be searched within each database identified based on the index information. The

specific interfaces include for a given set of keywords:

 Find all the matching databases

 For a given set of ranked matching database(s), find all rows in the database/tables

that contain all or most of the keywords.

(Sarda & Jain, 2001) provides discussion on how user query is analyzed and translated in

which the query module uses application vocabulary and stop words list to translate user‟s

terms into internal values wherever necessary and construct query tree.

4.3. Ranking the Databases

Consider a set of relational databases, (DB1, DB2, …, DBn), that have been registered and

indexed with the system. Given a keyword query Q = (k1, k2, …, kq), we would like to rank

the databases based on their usefulness to answer query Q. To evaluate the set of databases

that the system reports for a given query, (Hassan, Alhajj, Ridley & Barker, 2004) presented

a framework which is adopted in this work. It is based on the precision and recall metrics in

information retrieval (IR), which could be expressed as follows. Given a query q and a set S

of documents relevant to q, precision is the fraction of documents in the answer to q from S,

and recall is the fraction of S in the answer to q.

These notations are used to define metrics for the database selection and ranking problem: for

a given query q and a given set of relevant databases S, precision P is the fraction of

databases in the answer to q which are also in S, and recall R is the fraction of S in the answer

to q.

Let DB be a set of databases and q be a query. There is the need to compare its prediction

against what is actually the right set of databases from DB, denoted R(q,DB), which are

relevant to query q. The right set R(q,DB) is defined as the set of all databases in DB such

that it contains information that matches the set of all items – databases in this context-

relevant to the given query q.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 7

Formally: R(q,DB) = {db DB|RS(q,db) >0} where RS(q, db) is the actual number of

elements, which are present in database db and satisfy query q.

Finally, to evaluate how the set CE = (q,DB) approximates R(q,DB), (Hassan, Alhajj, Ridley

and Barker, 2004) defined the following two functions R

EP and R

ER , based upon the precision

and recall parameters, where R

EP is the fraction of selected databases which are right, and
R

ER is the fraction of the right databases selected according to the relevant search criteria.

Formally,

DBqC

DBqqRDBqC
P

E

ER

E
,(

),(),(
 , |CE(q, DB)| > 0 (1)

DBqR

DBqqRDBqC
R

ER

E
,(

),(),(
 , |R(q,DB)| > 0 (2)

Consider three databases, db1, db2, and db3 and supposed that they have been published,

indexed and their related statistics collected. Assume that the system received the query: q =

Hardy Thomas Cmputing. For this query, we assume that the estimations, using the Estimator

Function discussed in ((Hassan, Alhajj, Ridley & Barker, 2004), for all the databases are

positive i.e. the three databases are considered as relevant to the query, and hence the

reported subset is {db2, db3, db1}.

If we issue q to each individual database, we get the following results: RS1(q, db1) = 0,

RS2(q,db2) = 2 and RS3(q,db3) = 1. So, according to the definition of the right relevant

subset, R(q,DB)={db2, db3}

The considered precision and recall parameters are computed as:

67.0

3

2

},,{

},{},,{

132

32132

dbdbdb

dbdbdbdbdb
PR

E

1

2

2

},{

},{},,{

13

32132

dbdb

dbdbdbdbdb
RR

E

R

EP (q,DB) = 0.67, means two third of the selected databases are in the right set. On other

hand, R

ER (q, DB) = 1, means all of the databases in the right set are included in the selected

set CE(q, DB).

By definition of R

EP , if |CE(q, DB)|=0, we may consider R

EP (q, DB)=1, in order to capture the

fact that no database in CE(q, DB) is not Right. Similarly, by definition of R

ER , we may

consider R

ER (q, DB) = 1, whenever |R(q, DB)| = 0, since in this case all of the Right databases

are included in CE(q,DB).

With this, we can effectively rank a set of databases DB (DB1, DB2, …, DBn) for a given

keyword query. Specifically, the ranking is a mapping from DB to {1,2,…,N} such that

rank(DBi) < rank(DBj) rel(Q; DBi) rel(Q;DBj), where rel(Q;DBi) denotes the

relationship score of Q in DBi.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 8

Clearly, if databases are optimally ranked for a query, then it is sufficient to search the first k

database DB with the query. The implication is that databases with zero or negative score do

not contain the query terms and need not participate in the search process.

4.4 Algorithms

We now present algorithms for the core operations and processes in our system.

4.4.1 Publish

This module provides the necessary information that the crawler/Indexer needs to traverse a

particular database. Database(s) are registered and enabled for keyword search through the

following steps.

Algorithm PUBLISH

Input: database

Output: Information base

Begin

 Identify a database to be registered with the system

 Create information base that support keyword searches.

End

Figure 3: Publishing a Database

4.4.2 Crawling/Indexing

The Index table created is used at search time to efficiently determine the locations of query

keywords in the database (ie the tables, columns, rows they occur in for a particular database)

Algorithm INDEXER

Inputs: Database(s) [to be initially registered with the system]

Outputs: An Index table, DX

Begin

 Identify database, along with the set of tables and columns within the database to crawl.

//Compute Index table DX

 for I = 1 to no of database published

 scan database and for each table, T, in database

 for each keyword K in column c

 If K is a stop word then

 ignore K

 else
 Insert(K, c,) into DX if it does not already exist.

 Endif

 End inner for loop

 End outer for loop

 End Outtermost for loop

End

 Figure 4: Crawling and Indexing Algorithm

4.4.3 Search

Consider a query q, consisting of a set of keywords, which is to be evaluated over a set of

relational databases, DB, the system selects a subset of DB, which consists of relevant

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 9

candidate databases for submitting q. To make this selection, the system uses a scoring

function, which scores how relevant each database in DB is with respect to q.

Algorithm SEARCH

Inputs: A query consisting of keywords k1, k2,…,kk

Outputs: All database rows matching all or some of the keywords

Begin

//preprocess query

 Tokenize query terms/stream

 Recognize query terms vs. special operators.

 // Lookup the application vocabulary stop-words table for query conversion

 //and stop words elimination

 delete stop words (if any)

 Stem words

Create query representation

 Compute the score for each participating database in relation to q.

 Sort/Rank the database according to the set results.

//Search Index table:

 Look up index table to determine the tables, columns or cells containing query keywords

//Search for rows:

 Construct and execute SQL statement to retrieve matching rows

End

Figure 5: Search Algorithm

5. Implementation and Experimental Results

5.1 Input to the system:

The input to the system principally is a query which consists of a set of keywords q (k1 , . . . ,

km). Other input includes the database(s) to be published which is/are also periodically

updated and indexed to reflect the current state of the database(s).

5.2 Output from the system

The major output from the system is the result which represents the relevant documents to the

query q.

5.3 Experimental Evaluation

We implemented the techniques described and performed comprehensive experiments to

evaluate the efficiency and effectiveness of our approach.

5.3.1 Data Set

Databases: Two databases are used in the experiments. The first is the Northwind Database

from Microsoft that contains information about customers, employees, orders, order details,

etc. The second is a publication database that contains information about stores, publishers,

writers, sales, jobs, authors, titles, etc.

Query Set: We used a query set consisting of 1 to 5 keywords for evaluation. For each

query, we identify a set of relevance answers in the published databases.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 10

5.3.2 Testing and Evaluation of Results

Different parameters are used to measure the scalability, efficiency and effectiveness of the

Search System and evaluate the performance.

1. Publishing, Crawling and Indexing Time.

2. Response time of the different programs in the search engine implementation, as it is

scaled up to include more documents. A query response time is recorded.

3. The scalability of the indexed table and the performance of the search engine is

evaluated with the set of databases by varying the number of keywords which are

indexed and the distribution of the data size.

4. The standard information retrieval measures of precision and recall is computed to

evaluate the results and the set of databases that the system reports for a given query.

Precision is the proportion of documents that the search engine retrieves for a keyword that

are actually relevant to the query. It is computed by the formula:

documentsretrievedTotal

relevantarethatdocumentstrieved
ecision

Re
Pr (3)

Recall is the proportion of relevant documents (out of the “complete” collection) that are

retrieved and computed by the formula

collectioninkeywordrelevantTotal

retrievedarethatdocumentlevant
call

Re
Re (4)

1. Publishing, Crawling and Indexing Time

It involves scanning the database, processing the data to store in the indexed table and

populating the indexed table. . The publishing time is dominated by the time required to scan

the data and populate the index table. Populating the indexed table takes about 70% of the

total publishing time.

2. Number of Keyword in Search – Response Time.

We show that search scales with the number of query keywords. Figure 6 shows that the

program response time is linear and will scale up well to include a number of keywords. The

keywords were selected randomly from the underlying databases.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 11

0

0.01

0.02

0.03

0.04

0.05

0.06

1 2 3 4 5

Number of Keywords

A
v

e
r
a

g
e

 Q
u

e
r
y

/R
e

s
p

o
n

s
e

 T
im

e

Figure 6: Query performance with

keywords (Response time)

0

0.2

0.4

0.6

0.8

1

1.2

1 2 3 4 5 6 7 8 9 10

Data Size (MB)

Q
u

e
ry

 T
im

e

Figure 7: Query Performance with Data Size

2. Data Size and Distribution

We varied the data size from 2 to 10 MB real databases. In these databases the number of

distinct keywords is proportional to the data size.

The space required by the index table for database data varies almost linearly with data size.

The publishing time also increased almost linearly with data size. Figure 7 shows that the

average query execution time increases very slowly as the data size is increased. This is due

to a small increase in index table look-up time (recall that the index table sizes increase

proportionately with data size).

3. Precision and Recall

Figure 8 shows precision and recall for the queries over the databases. Results show that

average precision is 73% and average recall is 70%. When the precision values at each recall

value are averaged over all test queries, an average recall-precision curve is obtained as

shown in figure 9. This curve is used as the measure of the effectiveness of the system.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 12

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Query (No. of Keywords)

P
e

rc
e

n
ta

g
e

Precision

Recall

Figure 8: Queries’ Precision and Recall

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5

Query (No. of Keywords)
P

e
r
c

e
n

ta
g

e

Precision

Recall

Figure 9: Average Recall-Precision Curve

5.4 Discussion of Results

In this study only small selection of search items were used to test the search system and the

number of database published/registered, crawled and indexed for the search were reduced to

two. However, the search system can be used to search any number of databases without

changing code and any number of databases (or relations) can be registered for indexing and

crawling without changing the overall performanceof the system. Within these limitations,

the present results indicate that the system is optimized, scalable and efficient for database

search.

6. Conclusion

In this paper we described an implementation of mechanism that enables databases to be

registered seamlessly with the search system and allows users to find information of interest

and databases that contain such information across multiple registered databases in the

domain for a given query by selecting and rankings databases, searching the databases

according to their rank in a certain manner to retrieve documents. Clearly, if databases are

optimally ranked for a query, then it is sufficient to search the first k databases with the

query. The implication is that databases with zero or negative score do not contain the query

terms and need not participate in the search process. Unpublished databases cannot also

participate in the search process.

These combined publishing and search techniques greatly reduce the time required to search

the databases for keywords, as only registered, participating and relevant database(s) will be

searched for query terms.

With its capability to handle multiple databases, search any number of these databases

without changing code, and to provide a common search interface for applications

(databases) without the need for application interface themselves, the task of searching

information scattered across databases is simplified.

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 13

References

Agrawal. S., Chaudhuri, S., and Das, G. (2002). DBXplorer: A System for Keyword-Based

Search over Relational Databases. In Proceedings of IEEE International Conference

on Data Engineering, (ICDE). pp.152-163.

Agrawal. S., Chaudhuri, S. Das, G. and Gionis, A. (2003). Automated Ranking of Database

Query Results. In Proceedings of the CIDR Conference.. pp 146-155.

Anto, Y (2015). Professional SEO Secrets. Ankara: Lambert Academic Publishing.

Asadi S. and Jamali, H.R. (2004). Shifts in Search Engine Development: A Review of Past,

Present and Future Trends in Research on Search Engines. Webology, Volume 1,

Number 2. pp. 14-21. http://www.webology.ir/2004/v1n2/a6.html

Bergman, M. (2001). The Deep Web: Surfacing Hidden Value. pp. 1-10

www.brightplanet.com/pdf/deepwebwhitepaper.pdf [Accessed 06/08/2017]

Bhalotia, G., Hulgeri, A., Nakhe, C., Chakrabari, S. and Sudarshan, S. (2001). Keyword

Searching and Browsing in Database using BANKS. Technical Report, Indian

Institute of Technology , Bombay. pp. 200-208.

Bruno, N. Gravano, L. and Marian A. (2002). Evaluating Top-k Queries over Web

Accessible Databases. In ICDE. pp. 105 – 109.

Dar, S, Entin, G, Geva, S & Palmon, E. (1998). DTL's DataSpot.,VLDB.

Gravano, L., Garcia-Molina, H., and Tomasic, A. (1999). GIOSS: Text-Source Discovery

over the Internet. ACM Transactions on Database Systems, 24(20). pp. 229-264.

Hassan, M., Alhajj R., Ridley M.J., and Barker K. (2004). Simplified Access to Structured.

Databases by Adapting Keyword Search and Database Selection. ACM. pp. 261 –

273.

Hristidis, V., Gravano, L., and Papakonstantinou. Y. (2003) Efficient IR-Style Keyword

Search over Relational Databases. In Proceedings of VLDB. pp. 120-135.

Hristidis, V. and Papakonstantinou. Y. (2002) DISCOVER: Keyword Search over

Relational Databases. In Proceedings of VLDB. pp. 605 – 615.

Liu, F., Yu, C., Meng, W., and Chowdhury, A. (2006). Effective Keyword Search in

Relational Databases. In SIGMOD, ACM. pp. 411-421.

Masermann, U. and Vossen, G. (2000). Design and Implementation of a Novel Approach to

Keyword Searching in Relational Databases. In Proceedings of ADBIS-DASFAA

Symposium on Advances in Databases and Information Systems. pp 171-184.

Sarda, N.L. and Jain, A. (2001) Mragyati: A System for Keyword Based Searching in

Databases. Computing Research Repository. pp. 456-463.

http://arxiv.org/abs/cs.DB/010052.

Sayyadian, M., LeKhac, H., Doan, A. and Gravano L. (2004). Efficient Keyword Search

Across Heterogenous Relational Databases. pp. 345-352.

http://arxiv.org/abs/cs.DB/010252.

Wheeldon, R., Levene, M. and Keenoy, K. (2004) DBSurfer: A Search and Navigation Tool

for Relational Databases. Annual British National Conference on Databases. pp. 341-

355. http://www.dcs.bbk.ac.uk/~mark/download/dbsurfer-short.pdf [Accessed

12/08/2017]

Yu, C & Meng, W. (2003). Web Search Technology. In The Internet Encyclopedia. Vol 3.

Edited by Bidgoli, H. New Jersey: John Wiley & Sons, Inc.

Yu, B., Li, G., Solins, S. & Tung, A.K.H. (2007) Effective Keyword-Based Selection of

Relational Databases. SIGMOD. ACM. Pp 450-463

http://www.webology.ir/2004/v1n2/a6.html
http://arxiv.org/abs/cs.DB/010052
http://arxiv.org/abs/cs.DB/010252

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 14

APPENDIX: USER INTERFACES

We illustrate typical interactions with the search system via screen shots. The database(s)

is/are search-enabled through registration/publication by the administrator (Figures A1-A4).

Figure A1: Publishing database

Figure A2: A Published database showing the

size of the database

Figure A3: Database tables and columns

Selection for crawling and indexing

Figur A4: Selecting the columns (fieldnames)

of the selected table for crawling/indexing

Consider a query {hardy thomas computing}; perhaps the user is looking for a book by the

author.

Figure A5: Searching

The system first returns the set of ranked databases that contain the given keywords, along

with a brief description of each matching database. This aids the user in selecting a specific

International Journal of Computer Science and Mathematical Theory ISSN 2545-5699 Vol. 4 No.1 2018

www.iiardpub.org

IIARD – International Institute of Academic Research and Development

Page 15

database to be explored next. Figure A6 shows the search results indicating the matching

databases similar to the interface in (Agrawal, Chaudhuri, & Das. 2002).

Figure A6: Matching Databases

In the next step, as shown in figure A7, the user explores matches within a selected database.

It enumerates a list of subsets of tables and returns a ranked list of matching rows. The

system also offers browsing capabilities whereby the user can explore further details of the

retrieved rows by following links into related areas within the database. The link represents

the foreign-key relationship between the tables.

Figure A7: Matching rows

